Principal component analysis and quantitative image analysis to predict effects of toxics in anaerobic granular sludge.
نویسندگان
چکیده
Principal component analysis (PCA) was applied to datasets gathering morphological, physiological and reactor performance information, from three toxic shock loads (SL1 - 1.6 mg(detergent)/L; SL2 - 3.1mg(detergent)/L; SL3 - 40 mg(solvent)/L) applied in an expanded granular sludge bed (EGSB) reactor. The PCA allowed the visualization of the main effects caused by the toxics, by clustering the samples according to its operational phase, exposure or recovery. The aim was to investigate the variables or group of variables that mostly contribute for the early detection of operational problems. The morphological parameters showed to be sensitive enough to detect the operational problems even before the COD removal efficiency decreased. As observed by the high loadings in the plane defined by the first and second principal components. PCA defined a new latent variable t[1], gathering the most relevant variability in dataset, that showed an immediate variation after the toxics were fed to the reactors. t[1] varied 262%, 254% and 80%, respectively, in SL1, SL2 and SL3. The high loadings/weights of the morphological parameters associated with this new variable express its influence in shock load monitoring and control, and consequently in operational problems recognition.
منابع مشابه
A chemometric tool to monitor high-rate anaerobic granular sludge reactors during load and toxic disturbances
The wide fluctuations in flow rate and the presence of toxic compounds can damage the high efficiency of high-rate anaerobic granular sludge reactors. As earlier these disturbances are detected, more accurate would be the corrective actions, and less damage will be caused to the microorganisms involved in the process. The use of Principal Component Analysis (PCA) determined a latent variable, c...
متن کاملDynamic Modeling of Granular Sludge in UASB Reactors
n this paper, a mathematical model has been derived to predict the granulation time of anaerobic sludge in UASB reactors. In the proposed model, some physical, chemical and biological parameters affecting the granulation phenomena have been considered. To validate the model, 12 pilot-scale experiments in 4 UASB reactors are carried out and the results are discussed here. The reactors are starte...
متن کاملAdvanced monitoring of high-rate anaerobic reactors through quantitative image analysis of granular sludge and multivariate statistical analysis.
Four organic loading disturbances were performed in lab-scale EGSB reactors fed with ethanol. In load disturbance 1 (LD1) and 2 (LD2), the organic loading rate (OLR) was increased between 5 and 18.5 kg COD m(-3) day(-1), through the influent ethanol concentration increase, and the hydraulic retention time decrease from 7.8 to 2.5 h, respectively. Load disturbances 3 (LD3) and 4 (LD4) were appli...
متن کاملImage analysis, methanogenic activity and molecular biological techniques to monitor granular sludge from an egsb reactor fed with oleic acid
Morphological changes in anaerobic granular sludge fed with increasing loads of oleic acid were quantified by image analysis. The combination of this technique with data on the accumulation of adsorbed long chain fatty acid give insight into the mechanisms of sludge disintegration, flotation and washout The molecular characterization of microbial community indicated that the bacterial domain wa...
متن کاملFaults and fractures detection in 2D seismic data based on principal component analysis
Various approached have been introduced to extract as much as information form seismic image for any specific reservoir or geological study. Modeling of faults and fractures are among the most attracted objects for interpretation in geological study on seismic images that several strategies have been presented for this specific purpose. In this study, we have presented a modified approach of ap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioresource technology
دوره 100 3 شماره
صفحات -
تاریخ انتشار 2009